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Early work in the area of palladium- and nickel-catalyzed cross-
coupling focused on reactions of aryl and vinyl electrophiles.1 More
recently, there has been noteworthy progress in employing unac-
tivatedalkyl electrophiles as coupling partners in certain processes.2,3

Among cross-coupling methods, the Suzuki reaction is particularly
widely used, due in part to the abundance of commercially available
arylboronic acids, as well as their attractive stability, nontoxic
nature, and functional-group compatibility. The only catalyst that
has been reported to be effective for Suzuki couplings of unactivated
secondary alkyl halides is based on nickel/bathophenanthroline.4

This method can be applied to cross-couplings of a range of
secondary bromides, secondary iodides, and primary iodides with
arylboronic acids (eq 1). Of course, as for many initial discoveries,
there are limitations to the scope of this catalyst; for example,
primary or secondary alkyl chlorides, primary alkyl bromides, and
hindered arylboronic acids cannot be efficiently coupled. Further-
more, with respect to a longer-term objective of achieving asym-
metric Suzuki reactions of alkyl halides,5 the ineffectiveness of 2/9-
substituted phenanthrolines (e.g., neocuproine) was a cause for
concern.4,6

Cognizant of the need for more versatile catalysts for Suzuki
reactions of alkyl electrophiles, we have been exploring the
possibility of employing ligands other than bipyridine derivatives
to these cross-coupling processes. In this report, we describe our
discovery that readily available amino alcohols provide catalysts
with significantly enhanced scope (eqs 2 and 3), permitting, for
example, the first Suzuki reactions of unactivated secondary alkyl
chlorides.

As illustrated in Table 1, NiI2/trans-2-aminocyclohexanol fur-
nishes an active catalyst for Suzuki couplings of unactivated
secondary alkyl bromides with arylboronic acids (Table 1).7 Thus,
five-, six-, seven-, and eight-membered carbocycles and heterocycles
can be cross-coupled with an array of arylboronic acids, including
ortho-substituted8 and electron-rich substrates (entries 1-7).9 In
addition, bicyclic as well as acyclic secondary alkyl bromides are
suitable substrates (entries 8-14). Bothendo- andexo-2-bromonor-
bornane are converted into theexo product (entries 10 and 11),
probably due to a radical pathway for oxidative addition. It is

noteworthy that the catalyst components (NiI2 and trans-2-ami-
nocyclohexanol) are commercially available and can easily be
handled in air (versus air-sensitive Ni(cod)2; eq 1).

For alkyl bromides that bear a pendant olefin, a cyclization/cross-
coupling sequence can be achieved (eq 4). The diastereoselectivity
for these reactions is essentially identical to that obtained in
reductive cyclizations of these substrates by Bu3SnH,10 an observa-
tion consistent with the hypothesis that a radical intermediate is

Table 1. NiI2/trans-2-Aminocyclohexanol-Catalyzed Suzuki
Cross-Couplings of Secondary Alkyl Bromides (reaction
conditions: eq 2)

a Isolated yield (average of two experiments).b With 2.0 equiv of the
boronic acid used.c The starting material was 95:5 cis:trans; the product
was 35:65 cis:trans.d Theexoproduct was formed with>20:1 selectivity.
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involved in the oxidative-addition step of the nickel-catalyzed
processes.11

We were pleased to determine that the NiI2/trans-2-aminocy-
clohexanol-based method that we had developed for Suzuki
reactions of secondary alkyl bromides (Table 1) can be applied
without modification to secondary alkyl iodides, primary iodides,
and primary bromides (Table 2). The previously described nickel/
bathophenanthroline catalyst (eq 1) is ineffective for primary alkyl
bromides and displays inferior functional-group compatibility.

As suggested by entry 4 of Table 2 and entry 5 of Table 1, Ni/
trans-2-aminocyclohexanol is significantly more reactive toward
alkyl bromides than alkyl chlorides. Nevertheless, this catalyst does
exhibit slight activity for Suzuki reactions of alkyl chlorides (e.g.,
cyclohexyl chloride cross-couples with phenylboronic acid in 7%
yield under the conditions described in eq 2). In view of the lack
of precedent for Suzuki couplings of unactivated secondary alkyl
chlorides, we chose to pursue the development of the first effective
catalyst for such processes.

Capitalizing on the ready availability of structurally diverse amino
alcohols, we surveyed a variety of ligands and discovered a method
that achieves the desired objective (Table 3). Thus, when prolinol,
rather thantrans-2-aminocyclohexanol, is employed as a ligand,
nickel-catalyzed Suzuki cross-couplings of unactivated secondary
and primary alkyl chlorides proceed in good yield.12 Acyclic as
well as cyclic chlorides are suitable reaction partners, as are
electron-poor and electron-rich arylboronic acids.

In conclusion, we have demonstrated that Suzuki cross-coupling
reactions of an unprecedented array of unactivated primary and
secondary alkyl halides (including challenging alkyl chlorides) can
be accomplished through the use of nickel/amino alcohol-based
catalysts. Both the nickel precatalyst and the amino alcohols
(prolinol andtrans-2-aminocyclohexanol) are commercially avail-
able and air-stable. In view of the remarkable diversity of amino
alcohols that are readily accessible, we believe that the door is now
open to the rapid development of versatile catalysts for a wide range
of cross-coupling processes.
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Table 2. NiI2/trans-2-Aminocyclohexanol-Catalyzed Suzuki
Cross-Couplings of Secondary Alkyl Iodides, as Well as Primary
Alkyl Iodides and Bromides (reaction conditions: eq 2)

a Isolated yield (average of two experiments).b With 2.0 equiv of the
boronic acid used.c With 1.1 equiv of the boronic acid used.

Table 3. NiCl2‚Glyme/Prolinol-Catalyzed Suzuki Cross-Couplings
of Secondary and Primary Alkyl Chlorides (reaction conditions: eq
3)

a Isolated yield (average of two experiments).b Yield of the trans isomer
(yield of the mixture of isomers: 65%, according to GC analysis versus a
calibrated standard). The starting material was 95:5 trans:cis; the product
was 78:22 trans:cis.c With 2.0 equiv of the boronic acid used.
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